3.416 \(\int \frac {(e \sec (c+d x))^{5/2}}{\sqrt {a+i a \tan (c+d x)}} \, dx\)

Optimal. Leaf size=369 \[ \frac {i e^{5/2} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} d}-\frac {i e^{5/2} \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} d}-\frac {i e^{5/2} \log \left (-\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))+a\right )}{2 \sqrt {2} \sqrt {a} d}+\frac {i e^{5/2} \log \left (\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))+a\right )}{2 \sqrt {2} \sqrt {a} d}-\frac {i e^2 \sqrt {a+i a \tan (c+d x)} \sqrt {e \sec (c+d x)}}{a d} \]

[Out]

1/2*I*e^(5/2)*arctan(1-2^(1/2)*e^(1/2)*(a+I*a*tan(d*x+c))^(1/2)/a^(1/2)/(e*sec(d*x+c))^(1/2))/d*2^(1/2)/a^(1/2
)-1/2*I*e^(5/2)*arctan(1+2^(1/2)*e^(1/2)*(a+I*a*tan(d*x+c))^(1/2)/a^(1/2)/(e*sec(d*x+c))^(1/2))/d*2^(1/2)/a^(1
/2)-1/4*I*e^(5/2)*ln(a-2^(1/2)*a^(1/2)*e^(1/2)*(a+I*a*tan(d*x+c))^(1/2)/(e*sec(d*x+c))^(1/2)+cos(d*x+c)*(a+I*a
*tan(d*x+c)))/d*2^(1/2)/a^(1/2)+1/4*I*e^(5/2)*ln(a+2^(1/2)*a^(1/2)*e^(1/2)*(a+I*a*tan(d*x+c))^(1/2)/(e*sec(d*x
+c))^(1/2)+cos(d*x+c)*(a+I*a*tan(d*x+c)))/d*2^(1/2)/a^(1/2)-I*e^2*(e*sec(d*x+c))^(1/2)*(a+I*a*tan(d*x+c))^(1/2
)/a/d

________________________________________________________________________________________

Rubi [A]  time = 0.31, antiderivative size = 369, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 8, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.267, Rules used = {3501, 3495, 297, 1162, 617, 204, 1165, 628} \[ \frac {i e^{5/2} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} d}-\frac {i e^{5/2} \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} d}-\frac {i e^2 \sqrt {a+i a \tan (c+d x)} \sqrt {e \sec (c+d x)}}{a d}-\frac {i e^{5/2} \log \left (-\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))+a\right )}{2 \sqrt {2} \sqrt {a} d}+\frac {i e^{5/2} \log \left (\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))+a\right )}{2 \sqrt {2} \sqrt {a} d} \]

Antiderivative was successfully verified.

[In]

Int[(e*Sec[c + d*x])^(5/2)/Sqrt[a + I*a*Tan[c + d*x]],x]

[Out]

(I*e^(5/2)*ArcTan[1 - (Sqrt[2]*Sqrt[e]*Sqrt[a + I*a*Tan[c + d*x]])/(Sqrt[a]*Sqrt[e*Sec[c + d*x]])])/(Sqrt[2]*S
qrt[a]*d) - (I*e^(5/2)*ArcTan[1 + (Sqrt[2]*Sqrt[e]*Sqrt[a + I*a*Tan[c + d*x]])/(Sqrt[a]*Sqrt[e*Sec[c + d*x]])]
)/(Sqrt[2]*Sqrt[a]*d) - ((I/2)*e^(5/2)*Log[a - (Sqrt[2]*Sqrt[a]*Sqrt[e]*Sqrt[a + I*a*Tan[c + d*x]])/Sqrt[e*Sec
[c + d*x]] + Cos[c + d*x]*(a + I*a*Tan[c + d*x])])/(Sqrt[2]*Sqrt[a]*d) + ((I/2)*e^(5/2)*Log[a + (Sqrt[2]*Sqrt[
a]*Sqrt[e]*Sqrt[a + I*a*Tan[c + d*x]])/Sqrt[e*Sec[c + d*x]] + Cos[c + d*x]*(a + I*a*Tan[c + d*x])])/(Sqrt[2]*S
qrt[a]*d) - (I*e^2*Sqrt[e*Sec[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])/(a*d)

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 297

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 3495

Int[Sqrt[(d_.)*sec[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(-4*b*d^
2)/f, Subst[Int[x^2/(a^2 + d^2*x^4), x], x, Sqrt[a + b*Tan[e + f*x]]/Sqrt[d*Sec[e + f*x]]], x] /; FreeQ[{a, b,
 d, e, f}, x] && EqQ[a^2 + b^2, 0]

Rule 3501

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(d^2*
(d*Sec[e + f*x])^(m - 2)*(a + b*Tan[e + f*x])^(n + 1))/(b*f*(m + n - 1)), x] + Dist[(d^2*(m - 2))/(a*(m + n -
1)), Int[(d*Sec[e + f*x])^(m - 2)*(a + b*Tan[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2
 + b^2, 0] && LtQ[n, 0] && GtQ[m, 1] &&  !ILtQ[m + n, 0] && NeQ[m + n - 1, 0] && IntegersQ[2*m, 2*n]

Rubi steps

\begin {align*} \int \frac {(e \sec (c+d x))^{5/2}}{\sqrt {a+i a \tan (c+d x)}} \, dx &=-\frac {i e^2 \sqrt {e \sec (c+d x)} \sqrt {a+i a \tan (c+d x)}}{a d}+\frac {e^2 \int \sqrt {e \sec (c+d x)} \sqrt {a+i a \tan (c+d x)} \, dx}{2 a}\\ &=-\frac {i e^2 \sqrt {e \sec (c+d x)} \sqrt {a+i a \tan (c+d x)}}{a d}-\frac {\left (2 i e^4\right ) \operatorname {Subst}\left (\int \frac {x^2}{a^2+e^2 x^4} \, dx,x,\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{d}\\ &=-\frac {i e^2 \sqrt {e \sec (c+d x)} \sqrt {a+i a \tan (c+d x)}}{a d}+\frac {\left (i e^3\right ) \operatorname {Subst}\left (\int \frac {a-e x^2}{a^2+e^2 x^4} \, dx,x,\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{d}-\frac {\left (i e^3\right ) \operatorname {Subst}\left (\int \frac {a+e x^2}{a^2+e^2 x^4} \, dx,x,\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{d}\\ &=-\frac {i e^2 \sqrt {e \sec (c+d x)} \sqrt {a+i a \tan (c+d x)}}{a d}-\frac {\left (i e^2\right ) \operatorname {Subst}\left (\int \frac {1}{\frac {a}{e}-\frac {\sqrt {2} \sqrt {a} x}{\sqrt {e}}+x^2} \, dx,x,\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{2 d}-\frac {\left (i e^2\right ) \operatorname {Subst}\left (\int \frac {1}{\frac {a}{e}+\frac {\sqrt {2} \sqrt {a} x}{\sqrt {e}}+x^2} \, dx,x,\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{2 d}-\frac {\left (i e^{5/2}\right ) \operatorname {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt {a}}{\sqrt {e}}+2 x}{-\frac {a}{e}-\frac {\sqrt {2} \sqrt {a} x}{\sqrt {e}}-x^2} \, dx,x,\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{2 \sqrt {2} \sqrt {a} d}-\frac {\left (i e^{5/2}\right ) \operatorname {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt {a}}{\sqrt {e}}-2 x}{-\frac {a}{e}+\frac {\sqrt {2} \sqrt {a} x}{\sqrt {e}}-x^2} \, dx,x,\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{2 \sqrt {2} \sqrt {a} d}\\ &=-\frac {i e^{5/2} \log \left (a-\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))\right )}{2 \sqrt {2} \sqrt {a} d}+\frac {i e^{5/2} \log \left (a+\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))\right )}{2 \sqrt {2} \sqrt {a} d}-\frac {i e^2 \sqrt {e \sec (c+d x)} \sqrt {a+i a \tan (c+d x)}}{a d}-\frac {\left (i e^{5/2}\right ) \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} d}+\frac {\left (i e^{5/2}\right ) \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} d}\\ &=\frac {i e^{5/2} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} d}-\frac {i e^{5/2} \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} \sqrt {a} d}-\frac {i e^{5/2} \log \left (a-\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))\right )}{2 \sqrt {2} \sqrt {a} d}+\frac {i e^{5/2} \log \left (a+\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a+i a \tan (c+d x))\right )}{2 \sqrt {2} \sqrt {a} d}-\frac {i e^2 \sqrt {e \sec (c+d x)} \sqrt {a+i a \tan (c+d x)}}{a d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 3.70, size = 350, normalized size = 0.95 \[ \frac {e^3 (\tan (c+d x)-i) \left (-i \sqrt {-\sin (c)-i \cos (c)-1} \sqrt {-\sin (c)+i \cos (c)+1} \sqrt {\tan \left (\frac {d x}{2}\right )+i} \tanh ^{-1}\left (\frac {\sqrt {\sin (c)-i \cos (c)+1} \sqrt {-\tan \left (\frac {d x}{2}\right )+i}}{\sqrt {-\sin (c)-i \cos (c)-1} \sqrt {\tan \left (\frac {d x}{2}\right )+i}}\right )+i \sqrt {\sin (c)-i \cos (c)+1} \sqrt {\sin (c)+i \cos (c)-1} \sqrt {\tan \left (\frac {d x}{2}\right )+i} \tanh ^{-1}\left (\frac {\sqrt {-\sin (c)+i \cos (c)+1} \sqrt {-\tan \left (\frac {d x}{2}\right )+i}}{\sqrt {\sin (c)+i \cos (c)-1} \sqrt {\tan \left (\frac {d x}{2}\right )+i}}\right )+\sqrt {i \sin (2 c)+\cos (2 c)+1} \sqrt {-\tan \left (\frac {d x}{2}\right )+i} \sec (c+d x)\right )}{d \sqrt {i \sin (2 c)+\cos (2 c)+1} \sqrt {-\tan \left (\frac {d x}{2}\right )+i} \sqrt {a+i a \tan (c+d x)} \sqrt {e \sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(e*Sec[c + d*x])^(5/2)/Sqrt[a + I*a*Tan[c + d*x]],x]

[Out]

(e^3*(Sec[c + d*x]*Sqrt[1 + Cos[2*c] + I*Sin[2*c]]*Sqrt[I - Tan[(d*x)/2]] - I*ArcTanh[(Sqrt[1 - I*Cos[c] + Sin
[c]]*Sqrt[I - Tan[(d*x)/2]])/(Sqrt[-1 - I*Cos[c] - Sin[c]]*Sqrt[I + Tan[(d*x)/2]])]*Sqrt[-1 - I*Cos[c] - Sin[c
]]*Sqrt[1 + I*Cos[c] - Sin[c]]*Sqrt[I + Tan[(d*x)/2]] + I*ArcTanh[(Sqrt[1 + I*Cos[c] - Sin[c]]*Sqrt[I - Tan[(d
*x)/2]])/(Sqrt[-1 + I*Cos[c] + Sin[c]]*Sqrt[I + Tan[(d*x)/2]])]*Sqrt[1 - I*Cos[c] + Sin[c]]*Sqrt[-1 + I*Cos[c]
 + Sin[c]]*Sqrt[I + Tan[(d*x)/2]])*(-I + Tan[c + d*x]))/(d*Sqrt[e*Sec[c + d*x]]*Sqrt[1 + Cos[2*c] + I*Sin[2*c]
]*Sqrt[I - Tan[(d*x)/2]]*Sqrt[a + I*a*Tan[c + d*x]])

________________________________________________________________________________________

fricas [A]  time = 0.82, size = 461, normalized size = 1.25 \[ \frac {-4 i \, e^{2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {3}{2} i \, d x + \frac {3}{2} i \, c\right )} + \sqrt {\frac {i \, e^{5}}{a d^{2}}} a d \log \left (\frac {2 \, {\left ({\left (e^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + e^{2}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )} + \sqrt {\frac {i \, e^{5}}{a d^{2}}} a d\right )}}{e^{2}}\right ) - \sqrt {\frac {i \, e^{5}}{a d^{2}}} a d \log \left (\frac {2 \, {\left ({\left (e^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + e^{2}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )} - \sqrt {\frac {i \, e^{5}}{a d^{2}}} a d\right )}}{e^{2}}\right ) - \sqrt {-\frac {i \, e^{5}}{a d^{2}}} a d \log \left (\frac {2 \, {\left ({\left (e^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + e^{2}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )} + \sqrt {-\frac {i \, e^{5}}{a d^{2}}} a d\right )}}{e^{2}}\right ) + \sqrt {-\frac {i \, e^{5}}{a d^{2}}} a d \log \left (\frac {2 \, {\left ({\left (e^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + e^{2}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )} - \sqrt {-\frac {i \, e^{5}}{a d^{2}}} a d\right )}}{e^{2}}\right )}{2 \, a d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))^(5/2)/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/2*(-4*I*e^2*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(3/2*I*d*x + 3/2*I*c) + sq
rt(I*e^5/(a*d^2))*a*d*log(2*((e^2*e^(2*I*d*x + 2*I*c) + e^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(e/(e^(2*I*
d*x + 2*I*c) + 1))*e^(1/2*I*d*x + 1/2*I*c) + sqrt(I*e^5/(a*d^2))*a*d)/e^2) - sqrt(I*e^5/(a*d^2))*a*d*log(2*((e
^2*e^(2*I*d*x + 2*I*c) + e^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x
 + 1/2*I*c) - sqrt(I*e^5/(a*d^2))*a*d)/e^2) - sqrt(-I*e^5/(a*d^2))*a*d*log(2*((e^2*e^(2*I*d*x + 2*I*c) + e^2)*
sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x + 1/2*I*c) + sqrt(-I*e^5/(a*d
^2))*a*d)/e^2) + sqrt(-I*e^5/(a*d^2))*a*d*log(2*((e^2*e^(2*I*d*x + 2*I*c) + e^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) +
 1))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x + 1/2*I*c) - sqrt(-I*e^5/(a*d^2))*a*d)/e^2))/(a*d)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (e \sec \left (d x + c\right )\right )^{\frac {5}{2}}}{\sqrt {i \, a \tan \left (d x + c\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))^(5/2)/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((e*sec(d*x + c))^(5/2)/sqrt(I*a*tan(d*x + c) + a), x)

________________________________________________________________________________________

maple [A]  time = 1.33, size = 316, normalized size = 0.86 \[ -\frac {\left (\frac {e}{\cos \left (d x +c \right )}\right )^{\frac {5}{2}} \left (\cos ^{2}\left (d x +c \right )\right ) \left (-1+\cos \left (d x +c \right )\right )^{3} \sqrt {\frac {a \left (i \sin \left (d x +c \right )+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (i \cos \left (d x +c \right ) \arctanh \left (\frac {\sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \left (\cos \left (d x +c \right )+1+\sin \left (d x +c \right )\right )}{2}\right )-i \cos \left (d x +c \right ) \arctanh \left (\frac {\sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \left (\cos \left (d x +c \right )+1-\sin \left (d x +c \right )\right )}{2}\right )+2 i \sin \left (d x +c \right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}-\cos \left (d x +c \right ) \arctanh \left (\frac {\sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \left (\cos \left (d x +c \right )+1+\sin \left (d x +c \right )\right )}{2}\right )-\cos \left (d x +c \right ) \arctanh \left (\frac {\sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \left (\cos \left (d x +c \right )+1-\sin \left (d x +c \right )\right )}{2}\right )+2 \cos \left (d x +c \right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}+2 \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\right )}{2 d \sin \left (d x +c \right )^{5} \left (i \sin \left (d x +c \right )+\cos \left (d x +c \right )-1\right ) \left (\frac {1}{1+\cos \left (d x +c \right )}\right )^{\frac {5}{2}} a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*sec(d*x+c))^(5/2)/(a+I*a*tan(d*x+c))^(1/2),x)

[Out]

-1/2/d*(e/cos(d*x+c))^(5/2)*cos(d*x+c)^2*(-1+cos(d*x+c))^3*(a*(I*sin(d*x+c)+cos(d*x+c))/cos(d*x+c))^(1/2)*(I*c
os(d*x+c)*arctanh(1/2*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)+1+sin(d*x+c)))-I*cos(d*x+c)*arctanh(1/2*(1/(1+cos(d
*x+c)))^(1/2)*(cos(d*x+c)+1-sin(d*x+c)))+2*I*sin(d*x+c)*(1/(1+cos(d*x+c)))^(1/2)-cos(d*x+c)*arctanh(1/2*(1/(1+
cos(d*x+c)))^(1/2)*(cos(d*x+c)+1+sin(d*x+c)))-cos(d*x+c)*arctanh(1/2*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)+1-si
n(d*x+c)))+2*cos(d*x+c)*(1/(1+cos(d*x+c)))^(1/2)+2*(1/(1+cos(d*x+c)))^(1/2))/sin(d*x+c)^5/(I*sin(d*x+c)+cos(d*
x+c)-1)/(1/(1+cos(d*x+c)))^(5/2)/a

________________________________________________________________________________________

maxima [B]  time = 0.97, size = 2273, normalized size = 6.16 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))^(5/2)/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

-(128*e^2*cos(3/2*d*x + 3/2*c) + 128*I*e^2*sin(3/2*d*x + 3/2*c) + (16*sqrt(2)*e^2*cos(4/3*arctan2(sin(3/2*d*x
+ 3/2*c), cos(3/2*d*x + 3/2*c))) + 16*I*sqrt(2)*e^2*sin(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)
)) + 16*sqrt(2)*e^2)*arctan2(sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1, sqrt(2)
*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1) + (16*sqrt(2)*e^2*cos(4/3*arctan2(sin(3/2*d
*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 16*I*sqrt(2)*e^2*sin(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2
*c))) + 16*sqrt(2)*e^2)*arctan2(sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1, -sqr
t(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1) + (16*sqrt(2)*e^2*cos(4/3*arctan2(sin(3
/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 16*I*sqrt(2)*e^2*sin(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x +
 3/2*c))) + 16*sqrt(2)*e^2)*arctan2(sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 1,
sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1) + (16*sqrt(2)*e^2*cos(4/3*arctan2(si
n(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 16*I*sqrt(2)*e^2*sin(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*
x + 3/2*c))) + 16*sqrt(2)*e^2)*arctan2(sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) -
1, -sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1) - (16*I*sqrt(2)*e^2*cos(4/3*arct
an2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 16*sqrt(2)*e^2*sin(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/
2*d*x + 3/2*c))) + 16*I*sqrt(2)*e^2)*arctan2(sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c
))) + sin(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))), sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*
c), cos(3/2*d*x + 3/2*c))) + cos(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1) - (-16*I*sqrt(2
)*e^2*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 16*sqrt(2)*e^2*sin(4/3*arctan2(sin(3/2*d*
x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 16*I*sqrt(2)*e^2)*arctan2(-sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c),
cos(3/2*d*x + 3/2*c))) + sin(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))), -sqrt(2)*cos(1/3*arctan
2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + cos(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))
+ 1) - (8*sqrt(2)*e^2*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 8*I*sqrt(2)*e^2*sin(4/3*a
rctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 8*sqrt(2)*e^2)*log(2*sqrt(2)*sin(2/3*arctan2(sin(3/2*d*x
 + 3/2*c), cos(3/2*d*x + 3/2*c)))*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2*(sqrt(2)*co
s(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1)*cos(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*
d*x + 3/2*c))) + cos(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*cos(1/3*arctan2(sin(3/2*d*
x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + sin(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(
1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), c
os(3/2*d*x + 3/2*c))) + 1) + (8*sqrt(2)*e^2*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 8*I
*sqrt(2)*e^2*sin(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 8*sqrt(2)*e^2)*log(-2*sqrt(2)*sin(
2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3
/2*c))) - 2*(sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 1)*cos(2/3*arctan2(sin(3/2
*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + cos(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*cos
(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + sin(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*
x + 3/2*c)))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 - 2*sqrt(2)*cos(1/3*arctan2(
sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 1) - (-8*I*sqrt(2)*e^2*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), co
s(3/2*d*x + 3/2*c))) + 8*sqrt(2)*e^2*sin(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 8*I*sqrt(2
)*e^2)*log(2*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x +
3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2*
sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2) - (8*I*sqrt(2)*e^2*cos(4/3*arctan2(s
in(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 8*sqrt(2)*e^2*sin(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x
+ 3/2*c))) + 8*I*sqrt(2)*e^2)*log(2*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3
*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(
3/2*d*x + 3/2*c))) - 2*sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2) - (-8*I*sqrt(
2)*e^2*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 8*sqrt(2)*e^2*sin(4/3*arctan2(sin(3/2*d*
x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 8*I*sqrt(2)*e^2)*log(2*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x
+ 3/2*c)))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 - 2*sqrt(2)*cos(1/3*arctan2(si
n(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2*sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2
*c))) + 2) - (8*I*sqrt(2)*e^2*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 8*sqrt(2)*e^2*sin
(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 8*I*sqrt(2)*e^2)*log(2*cos(1/3*arctan2(sin(3/2*d*x
 + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 - 2*sqr
t(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 2*sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/
2*c), cos(3/2*d*x + 3/2*c))) + 2))*sqrt(a)*sqrt(e)/((-64*I*a*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x
 + 3/2*c))) + 64*a*sin(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 64*I*a)*d)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\left (\frac {e}{\cos \left (c+d\,x\right )}\right )}^{5/2}}{\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e/cos(c + d*x))^(5/2)/(a + a*tan(c + d*x)*1i)^(1/2),x)

[Out]

int((e/cos(c + d*x))^(5/2)/(a + a*tan(c + d*x)*1i)^(1/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))**(5/2)/(a+I*a*tan(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________